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REAL OPTION VALUE  

CHAPTER 14      INCENTIVE OPTIONS               8 April 2016 

 

Incentive options can be viewed using the toolkit implicit in previous chapters of real payoff diagrams, 

entry and exit options, and perpetual American puts and calls.  Incentive options may be granted (or 

required by) governments to encourage early investment in “desirable” projects such as renewable 

energy facilities, infrastructure investments like roads, bridges and other transportation, and in general 

public-private partnerships governing new facilities like schools, hospitals, and recreation areas.  

These incentive options are classified as (i) proportional revenue (or price and/or quantity) subsidies, 

where the market price and/or the quantity of production is uncertain or low, but the subsidy is 

proportional to the quantity produced (ii) supplementary revenue (or price and/or quantity) subsidies, 

where the market price and/or the quantity of production and/or the exogenous subsidy is uncertain (iii) 

revenue floors and ceilings, where the subsidy is related over time to the actual quantities produced or 

market prices. Examples of (i) are so-called Feed-in-Tariffs “FiT” which are fixed amount subsidies per 

unit production, (ii) renewable “green” certificates, which have an uncertain value but are usually 

allocated per unit of production, and (iii) government minimum revenue guarantees, sometimes 

accompanied by maximum revenue ceilings.     

In addition, governments provide incentives for free or at low cost (sport stadiums, concessions, priority 

access, protection through tariffs, quotas or security) in order to encourage “desirable” activities, or 

investment cost reliefs, consisting of direct grants and soft loans, tax credits or excess depreciation, 

which are not directly considered here, except in examining sensitivities of thresholds and real option 

value to changes in investment costs or taxation.  Some of these incentives can be evaluated in terms of 

the real option value compared to that paid to the government (taxes, concession and user fees and 

royalties) weighted against the immediate or eventual cost for the government.  Also it is interesting to 

study the effect on the real option value, and on the threshold that justifies immediate investment, of 

price, quantity and subsidy changes.  Who gets/gives what, when, how, and why are almost always 

critical considerations in incentive options.  

 

14.1 Proportional Subsidies 
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This section considers a menu of possible characteristic subsidies, first where there is no subsidy (Model 

1); then assuming there is a permanent subsidy proportional to the revenue (Model 2); then assuming 

there is a retractable subsidy proportional to the revenue (Model 3A), and finally assuming there is only 

the possibility of a permanent subsidy (Model 3B), as suggested in the Adkins and Paxson (2015), 

Appendix.  

Proportional Stochastic Revenue Models 

Consider a perpetual opportunity to construct an electricity generating facility producing Q  MWhrs/pa, 

using solar power, at a fixed investment cost K . This investment cost is treated as irreversible or 

irrecoverable once incurred. The real option value of this investment opportunity, denoted by ROV, 

depends on the amount of output Q, and the price per unit of output, denoted by P , P*Q=R revenue, 

assuming no operating or maintenance costs or taxes.   R is assumed to be stochastic and to follow a 

geometric Brownian motion process: 

 dR Rd dR Rt R Z    (1) 

 where R  denotes the instantaneous risk neutral drift parameter (equals  the asset yield), R  the 

instantaneous volatility,  and dZ  the standard Wiener process.  The differential equation representing 

the value to invest for an inactive investor with an appropriate investment opportunity (based perhaps 

on approval for the facility or a concession for infrastructure) is: 
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 
  

 
 (2) 

where r  is the risk-free rate.  Adkins and Paxson (2015) show that the solution to (2) is: 

 1

1 1ROV B R
 . (3) 
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1  is the power parameter for this option value function. Since there is an incentive to invest when R is 

sufficiently high but a disincentive when sufficiently low, the power parameter value is positive. Also, 

the power parameter is determined using the characteristic root equation (which is the positive root of 

a simple quadratic equation) found by substituting (3) in (2): 

 2

1 2 2 2

1 1 2
( )

2 2

r r r 


  

 
     . (4) 

After the investment, the solar plant generates revenue equaling (1+)*R, (so S=R) where  is the 

permanent subsidy proportional to the revenue sold (=0 indicates no possible subsidy).  So from (2), 

the valuation relationship for the operational state is:  

2
2 2 1 1

12

1
(1 ) 0.

2
R R

ROV ROV
R R R rROV

R R
  

 
    

 
          (5) 

After the investment (K), the solution to (5) is: 

 
(1 )

R

R

r








. (6) 

Model 1 

The subsidy is set to equal zero in Model 1. If the threshold revenue signaling an optimal investment is 

denoted by 
1R̂ , then: 

  1
1

1

ˆ
1

RR K r





 


. (7) 

The value for the investment opportunity is defined by: 
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 (8) 

where:          
11

1
1

1

ˆ
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




.               (9) 

Model 2 

For a positive proportional permanent subsidy  , the corresponding results are: 
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
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 (12) 

Model 3A  

The probability of a sudden unexpected withdrawal of the subsidy is denoted by  . If the revenue 

threshold signaling an optimal investment is denoted by 
3R̂ , then its solution is found implicitly from:   

    
 

13 3 1
3 1 3

3 3

ˆ ˆ
1 1 1 1

Rr
R K B R

  

   


 

   
              (13) 

where 1B  is from (9).  The value for the investment opportunity is specified by: 
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where:     
  3

1 3
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M
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R
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r



   

  



 
 


.          (15) 

3 is the positive root of (4) with  added to r.  For 0  , when there is no likelihood of the subsidy 

being withdrawn unexpectedly, 3 1  and Model 3A simplifies to the Model 2 solution.  

Model 3B 

The probability of a sudden unexpected introduction of a permanent subsidy is denoted by  . If the 

revenue threshold signaling an optimal investment is denoted by 
4R̂ , then its solution is found implicitly 

from:       13
3 2 2

3

ˆ ˆ( )
11

Rr
R K B R

r

  

  


 

  
                  (16) 

where 2B  is from (12).  The value for the investment opportunity is specified by: 
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 (17) 

where:     
31

4
3

3

ˆ(1 )
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R
B

r



 







.                   (18) 

For 0  , when there is no likelihood of an unexpected introduction of a permanent proportional 

subsidy, Model 3B simplifies to the Model 0 solution.  It is easy to put these formulae into Excel as 

shown in Figures 1, 2, 3, 4A and 4B below.   
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    Figure 1 

 

Figure 2  illustrates a subsidy of =1, which results in a threshold R*=R, justifying  immediate investment.  

                

Figure 2 
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                         REVENUE MODEL 1

INPUT Stochastic R EQ

P 22.50 Per MWhr

Q 10.00 MWhrs/per annum

R 225.00 B3*B4

K 4000.00 Per Capacity of 10 MWhrs/per annum

 0.20 Template

r 0.08 Given

 0.04 Template

 0.00 NO SUBSIDY
r 0.04 B8-B9

 0.00 Probability

OUTPUT   

ROV1 2456.34 IF(B5<B18,B17*(B5^B16),B15) 8

V-K 1625.00 ((1+B10)*B5/B11)-B6  

1 1.5616  4

B1 0.5215 (B18^(1-B16))/(B16*B11) 9

R1* 444.92 B6*B11*(B16/(B16-1)) 7

1 (1/B7^2)*(-(B9-0.5*(B7^2))+SQRT((B9-0.5*(B7^2))^2+(2*B8)*(B7^2)))

ODE 0.0000 0.5*(B7^2)*(B5^2)*B22+B9*B5*B21-B8*B14 2

DROV 17.0476 B16*B17*(B5^(B16-1))

GROV 0.0425 B16*(B16-1)*B17*(B5^(B16-2))
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Figure 3 shows that when the probability of subsidy withdrawal is zero, Model 3 is reduced to Model 2 in 

Figure 2. 

Figure 4A shows Model 3 with a positive probability of withdrawal, which reduces R* significantly, a 

“flighty bird in hand” motivates early investment. 

Figure 3 
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                         REVENUE MODEL 2

INPUT Stochastic R EQ

P 22.50

Q 10.00

R 225.00 B3*B4

K 4000.00

 0.20

r 0.08

 0.04

 1.00 SUBSIDY
r 0.04 B8-B9

 0.00 Probability of withdrawal

OUTPUT   

ROV2 7250.00 IF(B5<B18,B17*(B5^B16),B15) 11

V-K 7250.00 ((1+B10)*B5/B11)-B6

1 1.5616   

B2 1.5392 ((1+B10)*B18^(1-B16))/(B16*B11) 12

R2* 222.46 (B6*B11/(1+B10))*(B16/(B16-1)) 10

1 (1/B7^2)*(-(B9-0.5*(B7^2))+SQRT((B9-0.5*(B7^2))^2+(2*B8)*(B7^2)))
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                         REVENUE MODEL 3A EQ

INPUT Stochastic R

P 22.50

Q 10.00

R 225.00 B3*B4

K 4000.00

 0.20

r 0.08

 0.04

 1.00  
r 0.04 B8-B9

 0.00 Probability

OUTPUT   

ROV3 7250.00 IF(B5<B18,B17*(B5^B16)+B24*(B5^B23),B15) 14

V-K 7250.00 ((1+(1-B12)*B10)*B5/B11)-B6

3 1.5616  4

B3 1.0178  15

R3* 222.46   

Solver 0.0000 Set B19=0, Changing B18 13

1 1.5616   

B1 0.5215   

R1* 444.92   

3 (1/B7^2)*(-(B9+B12-0.5*(B7^2))+SQRT((B9+B12-0.5*(B7^2))^2+(2*(B8+B12)*(B7^2))))

R3* ((B6*B11)/(1+(1-B12)*B10))*(B16/(B16-1))+B24*(B18^B23)*((B16-B23)/(B16-1))-B18

B3 ((1+(1-B12)*B10)*B18^(1-B16))/(B16*B11)-(B23/B16)*B24*(B18^(B23-B16))
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Figure 4A  

 

Figure 4B 
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                         REVENUE MODEL 3A EQ

INPUT Stochastic R

P 22.50

Q 10.00

R 225.00 B3*B4

K 4000.00

 0.20

r 0.08

 0.04

 1.00  
r 0.04 B8-B9

 0.10 Probability

OUTPUT   

ROV3 6687.50 IF(B5<B18,B17*(B5^B16)+B24*(B5^B23),B15) 14

V-K 6687.50 ((1+(1-B12)*B10)*B5/B11)-B6

3 1.2426  4

B3 11.9792  15

R3* 56.65   

Solver 0.0000 Set B19=0, Changing B18 13

1 1.5616   

B1 0.5215   

R1* 444.92   

3 (1/B7^2)*(-(B9+B12-0.5*(B7^2))+SQRT((B9+B12-0.5*(B7^2))^2+(2*(B8+B12)*(B7^2))))

R3* ((B6*B11)/(1+(1-B12)*B10))*(B16/(B16-1))+B24*(B18^B23)*((B16-B23)/(B16-1))-B18

B3 ((1+(1-B12)*B10)*B18^(1-B16))/(B16*B11)-(B23/B16)*B24*(B18^(B23-B16))
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14.2  Exogenous Subsidies  

Model 4   Stochastic Price, Subsidy and Quantity 

Now consider a perpetual opportunity to construct a facility at a fixed investment cost K , where the 

subsidy is exogenous like a “green certificate”. The value of this investment opportunity, denoted by 1F , 

depends on the amount of output sold per unit of time, denoted by Q, the market price per unit of 

output, denoted by P , and the subsidy per output unit, S.  In the general model, all of these variables 

are assumed to be stochastic and are assumed to follow geometric Brownian motion processes (gBm): 

 d d dX XX X t X Z    (1) 

for  , ,X P S Q , where   denotes the risk neutral instantaneous drift parameter,   the 

instantaneous volatility,  and dZ  the standard Wiener process. Potential correlation between the 

variables is represented by  .  
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                         REVENUE MODEL 3B EQ

INPUT Stochastic R

P 22.50

Q 10.00

R 225.00 B3*B4

K 4000.00

 0.20

r 0.08

 0.04

 1.00  
r 0.04 B8-B9

 0.10 Probability

OUTPUT   

ROV4 7108.92 IF(B5<B18,B17*(B5^B16)+(B12/(B8+B12))*B22*(B23^B21),B15) 17

V-K 2187.50 (1+B12*B10)*B5/B11-B6

3 1.2426  18

B4 3.7637 ((1+B10*B12)*B18^(1-B16))/(B16*B11)  

R4* 1481.88  16

3 (1/B7^2)*(-(B11+B12-0.5*(B7^2))+SQRT((B11+B12-0.5*(B7^2))^2+(2*(B8+B12)*(B7^2))))

R4* (B16/(B16-1))*(B11/(1+B10*B12))*(B6+(B12/(B8+B12))*B22*(B23^B21))

1 1.5616  

B2 1.5392  

R2* 222.4621
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The partial differential equation (PDE) representing the value to invest for an inactive firm with an 

appropriate perpetual investment opportunity (based on perhaps approval for the facility or a 

concession for infrastructure) is: 

 

2 2 2
2 2 2 2 2 21 1 1

2 2 2

2 2 2

1 1 1

1 1 1
1

1 1 1
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F F F
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P Q P S Q S
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P Q S rF

P Q S

  

        

  

  
 

  

  
  

     

  
    

  

 (2) 

where r  is the risk-free rate. Following Adkins and Paxson (2016), when P,Q, or S are below ˆ ˆˆ, ,P Q S  

that justify immediate investment, the solution to (2) is: 

 1 1 1

1 1 1ROV F A P Q S
  

  . (3) 

where 1  , 
1 and 1  are the power parameters for this option value function. Since there is an incentive 

to invest when P , Q and S are sufficiently high but a disincentive when these are sufficiently low, we 

expect that all power parameter values are positive. Also, the parameters are linked through the 

characteristic root equation found by substituting (3) in (2): 

 

       2 2 21 1 1
1 1 1 1 1 1 1 1 12 2 2

1 1 1 1 1 1

1 1 1

, , 1 1 1

0

P Q S

PQ P Q PS P S QS Q S

P Q S

Q

r

           

              

     

      

 

    

. (4) 

After the investment, the plant generates revenue equaling PQ  + SQ , with the present value factor of 

parts of this net revenue denoted kP, kQ and kS (no operating costs or taxes) (life assumed to be T=20 

years in the base case)1.  
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 

  

    
 

  
  (5) 
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 





  (6) 

                                                             
1
 This is the methodology in Boomsma  and Linnerud (2015). 
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( )*( )*
1 1

, ,
( ) ( )

S QS
r Tr T

S SQ

S S Q

e e
k k

r r
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   
 

 
  

 (7) 

The value matching relationship, when the real option value upon exercise is equal to the net present 

value of the investment (NPV), is: 

 1 1 1

1 1 1
ˆ ˆ ˆ ˆ ˆˆ ˆ

PQ SQA P Q S k PQ k S Q K       (8) 

The three associated smooth pasting conditions can be expressed as: 

 1 1 1

1 1 1
ˆ ˆ ˆˆ ˆ

PQA P Q S k PQ     (9)  

 1 1 1

1 1 1 1
ˆ ˆ ˆ ˆ ˆˆ ˆ

PQ SQA P Q S k PQ k S Q      (10) 

 1 1 1

1 1 1 1
ˆ ˆ ˆ ˆˆ

SQA P Q S k S Q     (11) 

A quasi-analytical solution to the set of five equations 4-8-9-10-11 for 7 unknowns  

1 1 1 1 1
ˆ ˆˆ, , , , , ,P Q S A   is obtained by assuming ˆˆ ,P P Q Q  as in Adkins and Paxson (2016), and 

then finding  
1 1 1 1 1

ˆ , , , ,S A   .  An analytical solution is obtained by recognizing that: 

     1 1 1

1 1 1
ˆ ˆ ˆˆ ˆ/PQA k PQ P Q S            (12) 

and  

1 1 1
ˆ ˆ /PQ SQS k P k            (13) 

This implies that    
1 1 1               (14) 

Eliminating 
1A  from (8) yields: 

 
1 1

ˆ ˆ ˆ ˆˆ ˆ/ ( )PQ PQ SQk PQ k PQ k S Q K     (15) 

So      1 11 1
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PQ

K

k PQ
 

 
   

 
 

                                                                     (16) 

  

Eliminating 
1  and 

1  from the characteristic root equation (4) yields the quadratic equation: 

   2

1 1 1{ } { } { } 0Q a b c       (17) 
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This equation has the simple quadratic solution:  

 

2

1

4

2

b b ac

a

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   (18) 

Model 5    

Stochastic Price and Subsidy with a Deterministic Quantity 

We now modify the analysis to consider the impact on the investment decision of a permanent but 

uncertain government subsidy, denoted by S, but where the output Q sold per unit of time is 

deterministic.  

The PDE is: 

 

2 2
2 2 2 22 2

2 2

2

2 2 2 2
2

1 1

2 2

0.

P S

PS P S P Q S

F F
P S

P S

F F F F
PS P Q S rF

P S P Q S

 

     

 


 

   
     

    

 (19) 

where X  denote the risk-neutral drift rates and r  the risk-free rate, (=r-). The solution to (19) is: 

 2 2 2

2 2 2ROV F A P Q S
  

  . (20) 
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where 2  , 
2 and 2  are the power parameters for this option value function (allowing for a 

deterministic quantity). We expect that all power parameter values are positive. Also, the parameters 

are linked through the characteristic root equation found by substituting (20) in (19): 

 

     2 21 1
2 2 2 2 2 2 22 2

2 2 2 2 2

, , 1 1

0

P S

PS P S P Q S

Q

r

        

          

    

      . (21) 

The value matching relationship becomes:    

 2 2 2

2 2 2
ˆ ˆ ˆ ˆ ˆˆ ˆ

PQ SQA P Q S k PQ k S Q K       (22) 

Eliminating 
2  and 

2  from the characteristic root equation (21) yields the quadratic equation: 

   2

2 2 2{ } { } { } 0Q a b c       (23) 

 



 

2
2 2 2 21 1

2 2 2 2 2

2 21 1
2 2

2

[ ] ]
ˆˆ2

[
ˆˆ

[ ]}
ˆˆ 2

P PS P S S S PS P S S

PQ

P S P S PS P S Q S

Q

S

Q

P

Q

P

S

K K

PQk

K

PQk

c r

a
P Q k

b

         

        


 

    





 

  

  



 

 

The solution to this equation is again: 

 

2

2

4

2

b b ac

a


  
   (24) 

The difference between (17) and (23) is that the Q volatility has been eliminated, but not the Q.  

Model 6    

Stochastic Price and Quantity with a Permanent Deterministic Subsidy  



15 
 

We modify the analysis to consider the impact on the investment decision of a permanent  deterministic 

government subsidy, denoted by S, but where the output Q  and market price P are stochastic.  

The PDE is: 

2 2 2
2 2 2 23 3 3 3 3 3

32 2

1 1
0.

2 2
P Q PQ P Q P Q S

F F F F F F
P Q PQ P Q S rF

P Q P Q P Q S
       

     
      

        (25) 

The solution to (25) is: 

 3 3 3

3 3 3ROV F A P Q S
  

  . (26) 

where 3  , 
3 and 3  are the power parameters for this option value function.  The parameters are 

linked through the characteristic root equation found by substituting (26) in (25): 

 

     2 21 1
3 3 3 3 3 3 32 2

3 3 3 3 3

, , 1 1

0

P Q

PQ P Q P Q S

Q

r

        

          

    

     . (27) 

Eliminating 
3  and 

3  from the characteristic root equation yields the quadratic equation: 

   2

3 3 3{ } { } { } 0Q a b c       (28) 

 

 

2
2 21

2 2 2 2

2

21
2

[ ] ][
ˆˆ

[ ]}
ˆˆ 2

ˆˆ2

{

P Q PQ P Q

PQ

Q

P S P PQ P Q

P

Q S

Q

Q

S

PQ

K

PQk

K
a

P Q k

b
K

PQk

c r

    


       

 

 

    



 

     

The solution to this equation is again:  

2

3

4

2

b b ac

a


  
                           (29) 

All of these models can easily be solved in Excel as shown in Figures 5, 6 and 7 below. 

 



16 
 

Figure 5 

 

 

 

 

Figure 6 
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3

4

5

6

7
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9
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14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

A B C D

SUBSIDIES MODEL 4

INPUT Stochastic  P & Q & S  EQ

P 22.5  

Q 10  

S 30 per kwh

R 325 B3*B5+B4*B5

K 4000  

P 0.20

Q 0.20  
s 0.20

PQ 0

PS 0

SQ 0

r 0.08

P 0.04

Q 0  
s 0

OUTPUT 692.08 B4*(B3+B25) R*

a1 0.0550 0.5*(B8^2)+0.5*(B10^2)-B12*B8*B10+((B7^2)/(2*B34))*((B9^2)+2*B13*B9*B10+(B10^2))+B35 17

b1 0.0517 B15-B17-0.5*(B8^2)-0.5*(B10^2)+B11*B8*B9+B12*B8*B10-B13*B9*B10+B36 17

1 0.8244 (-B20+SQRT((B20^2)-4*B19*(-B14+B16+B17+B13*B9*B10)))/(2*B19) 18

1 1.2402 1+B21*((B7/(B28*B30*B29))-1) 16

1 2.0646 B21+B22 15

A1 0.0211 B33/(B21*(B28^B21)*(B29^B23)*(B25^B22)) 12

S^1 46.7077 (B22*B28*B30)/(B21*B32) 13

F1(P,Q,S) 2169.7890 IF(B5<B25, B24*(B3^B21)*(B4^B23)*(B5^B22),B27) 3

F1(P,Q,S) 3757.2233 (B30*B28*B29)+(B32*B25*B29)-B7 8

P^ 22.5000  

Q^ 10.0000  

P PV  rP 13.7668 (1-EXP(-(B14-B15)*B38))/(B14-B15) 5

Q PV  rQ 9.9763 (1-EXP(-(B14-B16)*B38))/(B14-B16) 6

S PV  rS 9.9763 (1-EXP(-(B14-B17)*B38))/(B14-B17) 7

PQrPQ 3097.5246 B28*B29*B30

P^2Q^1rPQ^2 9594658.5041 (B28^2)*(B29^2)*(B30^2)

a2 -0.0517 (B7/B33)*(B11*B8*B9+B12*B8*B9-B13*B9*B10-(B10^2)) 17

b2 0.0517 (B7/B33)*(B16+B17+0.5*(B9^2)+2*(B13*B9*B10)+0.5*(B10^2)) 17

1 0.8244 B33/(B33+B32*B25*B29-B7) 15

T 20.00000  

PDE 0.0000 0.5*(B8^2)*(B3^2)*B43+0.5*(B9^2)*(B4^2)*B44+0.5*(B10^2)*(B5^2)*B45+B15*B3*B40+B16*B4*B41+B17*B5*B42-B14*B26 2
DROV1,P 79.5029 B21*B24*(B3^(B21-1))*(B4^B23)*(B5^B22)
DROV1,Q 447.9781 B23*B24*(B3^B21)*(B4^(B23-1))*(B5^B22)
DROV1,S 89.6989 B22*B24*(B3^B21)*(B4^B23)*(B5^(B22-1))
GROV1,P -0.6204 B21*(B21-1)*B24*(B3^(B21-2))*(B4^B23)*(B5^B22)
GROV1,Q 47.6925 B23*(B23-1)*B24*(B3^B21)*(B4^(B23-2))*(B5^B22)
GROV1,S 0.7182 B22*(B22-1)*B24*(B3^B21)*(B4^B23)*(B5^(B22-2))
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These figures show a different threshold over Models 1-2-3 with some of the same parameter values, 

because the facility is finite (20 years) rather than perpetual, although the investment opportunity is 

perpetual. Figure 5 shows a threshold of R*=692, with P,Q and S stochastic. Figure 6 shows a threshold 

of R*=534 with the same volatility for P and S, but Q is constant.  Figure 7 shows R*=673 with a 

stochastic P and Q (since Q is volatile so is the extra revenue QS, even though S is assumed to be 

constant).  If a government wants to encourage early investment though green certificate allocations, 

intervening in the certificate trading market to minimize volatility and drift, or an arrangement where 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

A B C D

SUBSIDIES MODEL 5

INPUT Stochastic  P & S  

P 22.50  

Q 10.00  

S 30.00 per kwh

R 325.00 B3*B5+B4*B5

K 4000.00  

P 0.20

Q 0.00  
s 0.20

PQ 0.00

PS 0.00

SQ 0.00

r 0.08

P 0.04

Q 0.00  
s 0.00

OUTPUT 534.87 B4*(B3+B25) R*

a1 0.0217 0.5*(B8^2)+0.5*(B10^2)-B12*B8*B10+((B7^2)/(2*B34))*((B10^2))+B35 23

b1 0.0258 B15-B17-0.5*(B8^2)-0.5*(B10^2)+B12*B8*B10+B36 23

2 1.4151 (-B20+SQRT((B20^2)-4*B19*(-B14+B16+B17)))/(2*B19) 24

2 1.4123 1+B21*((B7/(B28*B30*B29))-1) 16

2 2.8274 B21+B22 14

A2 0.0003 B33/(B21*(B28^B21)*(B29^B23)*(B25^B22)) 12

S^2 30.9869 (B22*B28*B30)/(B21*B32) 13

F2(P,Q,S) 2091.0632 IF(B5<B25, B24*(B3^B21)*(B4^B23)*(B5^B22),B27) 20

F2(P,Q,S) 2188.8695 (B30*B28*B29)+(B32*B25*B29)-B7 22

P^ 22.5000  

Q^ 10.0000  

P PV  rP 13.7668 (1-EXP(-(B14-B15)*20))/(B14-B15) 5

Q PV  rQ 9.9763 (1-EXP(-(B14-B16)*20))/(B14-B16) 6

S PV  rS 9.9763 (1-EXP(-(B14-B17)*20))/(B14-B17) 7

PQrPQ 3097.5246 B28*B29*B30

P^2Q^1rPQ^2 9594658.5041 (B28^2)*(B29^2)*(B30^2)

a2 -0.0517 (B7/B33)*(-(B10^2)) 23

b2 0.0258 (B7/B33)*(B16+B17+0.5*(B10^2)) 23

2 1.4151 B33/(B33+B32*B25*B29-B7)

   

PDE 0.0000 0.5*(B8^2)*(B3^2)*B43+0.5*(B10^2)*(B5^2)*B45+B15*B3*B40+B16*B4*B41+B17*B5*B42-B14*B26

DROV2,P 131.5163 B21*B24*(B3^(B21-1))*(B4^B23)*(B5^B22)
DROV2,Q 591.2329 B23*B24*(B3^B21)*(B4^(B23-1))*(B5^B22)
DROV2,S 98.4404 B22*B24*(B3^B21)*(B4^B23)*(B5^(B22-1))
GROV2,P 2.4265 B21*(B21-1)*B24*(B3^(B21-2))*(B4^B23)*(B5^B22)

   
GROV2,S 1.3529 B22*(B22-1)*B24*(B3^B21)*(B4^B23)*(B5^(B22-2))
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the allocation of these certificates is inversely related to Q (which seems fair) would lower the threshold 

S that justifies immediate investment. 

Figure 7 

 

Barbosa et al. (2016) re-interpret the role of government as an active player instead of a passive agent, 

who can undertake the investment but less efficiently and set differential taxes. In this extended model 

that also captures the multiplier effect of investing, the authors show that the subsidy acts more 

effectively than a tax reduction in inducing investment, but only up to some maximum level. 
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A B C D

SUBSIDIES MODEL 6

INPUT Stochastic  P & Q  EQS

P 22.50  

Q 10.00  

S 30.00 per kwh

R 325.00 B3*B5+B4*B5

K 4000.00  

P 0.20

Q 0.20  
s 0.00

PQ 0.00

PS 0.00

SQ 0.00

r 0.08

P 0.04

Q 0.00  
s 0.00

OUTPUT 673.09 B4*(B3+B25) R*

a1 0.0534 0.5*(B8^2)+((B7^2)/(2*B34))*((B9^2))+B35 28

b1 0.0458 B15-B17-0.5*(B8^2)+B11*B8*B9+B36 28

3 0.8682 (-B20+SQRT((B20^2)-4*B19*(-B14+B16+B17)))/(2*B19) 29

3 1.2529 1+B21*((B7/(B28*B30*B29))-1) 16

3 2.1211 B21+B22 14

A3 0.0154 B33/(B21*(B28^B21)*(B29^B23)*(B25^B22)) 12

S^3 44.8092 (B22*B28*B30)/(B21*B32) 13

F3(P,Q,S) 2158.1516 IF(B5<B25, B24*(B3^B21)*(B4^B23)*(B5^B22),B27) 26

F3(P,Q,S) 3567.8196 (B30*B28*B29)+(B32*B25*B29)-B7

P^ 22.5000  

Q^ 10.0000  

P PV  rP 13.7668 (1-EXP(-(B14-B15)*20))/(B14-B15) 5

Q PV  rQ 9.9763 (1-EXP(-(B14-B16)*20))/(B14-B16) 6

S PV  rS 9.9763 (1-EXP(-(B14-B17)*20))/(B14-B17) 7

PQrPQ 3097.5246 B28*B29*B30

P^2Q^1rPQ^2 9594658.5041 (B28^2)*(B29^2)*(B30^2)

a2 0.0000 (B7/B33)*(B11*B8*B9+B12*B8*B9) 28

b2 0.0258 (B7/B33)*(B16+B17+0.5*(B9^2)) 28

3 0.8682 B33/(B33+B32*B25*B29-B7)
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14.3 Revenue Floors & Ceilings (Real Collar Options) 

A real collar option may be a suitable policy device for a government to induce investment by 

guaranteeing a floor in the face of adverse circumstances, and simultaneously capturing abnormally high 

returns when the circumstances are sufficiently favourable.   Shaoul, Stafford and Stapleton (2012) note 

that the East Coast Main Line (London to Aberdeen) rail franchise was awarded for a premium paid by 

the concessionaire, with “clauses that would after four years reimburse the operators for 50% of any 

shortfall in revenue below 98% of the original forecast and 80% of any shortfall in revenue below 96%, 

and claw back 50% of any increase in revenue above 102% of the original forecast” (page 13).  

Implementing a collar results in an earlier exercise due to the guarantee while its cost may be partially 

reimbursed by penalizing significantly high profits. The analysis of collars adopts a real option 

formulation because the implied guarantee and penalty are expressible as real options, the sunk cost is 

partly irretrievable, deferral flexibility is present, and uncertainty prevails.  An American perpetuity 

model produces a straightforward method for engineering a collar because the guarantee level can first 

be ascertained from knowing the desired threshold prompting exercise, and the penalty level can then 

be determined from deriving the appropriate ROV (which may, or may not, be paid by the concession 

investor to the government).  American perpetuity and European fixed maturity collars share the 

characteristic of involving the buying and selling of puts and calls, but the former is also an investment 

timing model. 

There are several authors who have viewed a PPP deal as a set of real options embedded in an active 

project. Most of these formulations adopt numerical techniques like Monte-Carlo simulation approach 

sometimes in conjunction with a binomial lattice for obtaining their findings, but some base their 

conclusions on an analytical real option framework. By evaluating numerically an actual toll road 

concession involving both a guarantee and penalty, Rose (1998) shows that the government guarantee 

contributes significant value to the project because returns are conserved at a minimum level. This is 

replicated using an alternative formulation by Alonso-Conde et al. (2007), who show that these 

guarantee not only act as incentives but also have the potential of generously transferring significant 

value to the investor. Cheah and Liu (2006) adopt a similar methodology to reach a similar finding in 

their investigation of a toll crossing concession. Garvin and Cheah (2004) discuss the advocacy of a real 

option formulation for capturing the value from deferment and guarantees embedded in PPP deals. The 

implied value of several interacting flexibilities for a rail concession are investigated by Bowe and Lee 

(2004), while Huang and Chou (2006) appraise minimum revenue guarantees and abandonment rights 
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for a similar concession using a European-style framework. Blank et al. (2009) investigate the role of a 

graduated series of guarantees and penalties incurred when operating a toll road concession as a risk 

transfer device for avoiding bankruptcy that benefits both the investor and lender. Besides these 

numerical investigations, there are two key analytical studies. Takashima et al. (2010) design a PPP deal 

involving government debt participation that incorporates a floor on the future maximum loss level 

where the investor has the right to sell back the project whenever adverse conditions emerge. Using an 

analytical model, they show the effect of such deals on the investment timing decision. Also, Armada et 

al. (2012) make an analytical comparison of various subsidy policies and a demand guarantee scheme to 

reveal their differentiated qualities. 

14.3.1   Fundamental Model 

For a firm in a monopolistic situation confronting a single source of uncertainty due to output price 

variability, the opportunity to invest in an irretrievable project at cost K  depends solely on the price 

evolution (ignoring operating costs and taxes), which is specified by the geometric Brownian motion 

process:      d d dP P t P W   ,             (1) 

where   denotes the expected price risk-neutral drift,   the price volatility, and dW  an increment of 

the standard Wiener process. Using contingent claims analysis, the option to invest in the project  F P  

follows the risk-neutral valuation relationship: 

  
2

2 21
2 2

0
F F

P r P rF
P P

 
 

   
 

, (2) 

where r   denotes the risk-free interest rate and r    the rate of return shortfall. The generic 

solution to (2) is:    1 2

1 2F P A P A P 
  ,              (3) 

where 1 2,A A  are to be determined generic constants and 1 2,   are, respectively, the positive and 

negative roots of the fundamental equation, which are given by: 

 

2

1 1
1 2 2 22 2 2

2
,

r r r 
 

  

    
       

   
. (4) 
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In (3), if 2 0A   then F , a continuously increasing function of P , represents an American perpetual 

call option, Samuelson (1965), while if 1 0A   then it is a decreasing function and represents a put 

option, Merton (1973).  

In the absence of other forms of optionality and a fixed output volume Q , a firm optimally invests when 

the value matching relationship linking the call option value and the net proceeds PQ K   is in 

balance:   1

0A P PQ K   .               (5) 

Following standard methods, the optimal price threshold level triggering investment 
0P̂  (without collar) 

is     1
0

1

ˆ
1

P K
Q

 





               (6) 

and the value function is: 

  

1

0

1 0
0

0

ˆfor
ˆ1

ˆfor ,

K P
P P

PF P

PQ
K P P







  
  
    


  


  (7) 

with:     
1 11

0 0
0

1 1

ˆ ˆ
.

1

P Q KP
A

 

 

 

 


                   (8) 

14.3.2 Investment and Collar Option 

 

A collar option is designed to confine the output price for an active project to a tailored range, by 

restricting its value to lie between a floor level LP  and a ceiling level HP . Whenever the price falls 

below the floor, the received output price is assigned the value LP , and whenever it exceeds the ceiling, 

it is assigned the value HP . By restricting the price to this range, the firm is benefiting by receiving a 

price that never falls below LP  and is obtaining protection against adverse price movements, whilst at 

the same time, it is being forced never to receive a price exceeding HP  by sacrificing the upside 

potential. Protection against downside losses are mitigated in part by sacrificing upside gains. If as part 
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of its subsidy policy, a government offers a firm a price collar in its provision of some output Q , the 

government compensates the firm by a positive amount equalling  LP P Q  whenever LP P , but if 

the ceiling is breached and HP P , then the firm reimburses the government by the positive amount 

 HP P Q . It follows that for an active project, the revenue accruing to the firm is given by 

    min max ,C L HP P P P Q   and its value CV  is described by the risk-neutral valuation 

relationship: 

    
2

2 21
2 2

0C C
C C

V V
P r P rV P

P P
  

 
    

 
.  (9) 

The relationship (2) and (9) are identical in form except for the revenue function. 

 

The valuation of an active project with a collar is conceived over three mutually exclusive exhaustive 

regimes, I, II and III, specified on the P  line, each with its own distinct valuation function. Regimes I, II 

and III are defined by ,LP P L HP P P   and HP P , respectively.  Over Regime I, the firm is 

granted a more attractive fixed price LP  compared with the variable price P , but also possesses a call-

style option to switch to the more favourable Regime II as soon as P  exceeds LP . This switch option 

increases in value with P  and has the generic form 1AP
 , where A  denotes a to be determined generic 

coefficient. Over Regime III, the firm is not only obliged to accept the less attractive fixed price HP  

instead of P  but also has to sell a put-style option to switch to the less favourable Regime II as soon as 

P  falls below HP . This switch option decreases in value with P  and has the generic form 2AP
 . Over 

Regime II, the firm receives the variable price P , possesses a put-style option to switch to the more 

favourable Regime I as soon as P  falls to LP , but sells a call-style option to switch to the less favourable 

Regime III as soon as P  attains HP .  

If the subscript C  denotes the collar arrangement, then after paying the investment cost, the valuation 

function for the firm managing the active project is formulated as: 
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  
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                  for .
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P Q
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r

PQ
V P A P A P P P P

P Q
A P P P

r



 






 




    



 


  (10) 

In (10), for the coefficients the first numerical subscript denotes the regime {1,2,3}, the second subscript 

denotes a call (if 1) or put (if 2). The coefficients 11 22,C CA A  are expected to be positive because the firm 

owns the options and a switch is beneficial. In contrast, the 21 32,C CA A  are expected to be negative 

because the firm is selling the options and is being penalized by the switch. The real collar is composed 

of a pair of both call and put options. The first pair facilitates switching back and forth between Regimes 

I and II, which is an advantage for the firm, while the second pair facilitates switching back and forth 

between Regimes II and III, which is a disadvantage for the firm. The real collar design differs from the 

typical European collar that only involves buying and selling two distinct options. 

A switch between Regimes I and II occurs when LP P . It is optimal provided the value-matching 

relationship:     2 1 2

12 21 22
L

C C C

P Q PQ
A P A P A P

r

  


    ,         (11) 

and its smooth-pasting condition expressed as: 

 2 1 2

2 12 1 21 2 22C C C

PQ
A P A P A P

    


     (12) 

both hold when evaluated at LP P . Similarly, a switch between Regime II and III occurs when HP P

. It is optimal provided the value-matching relationship: 

 1 2 1

21 22 31
H

C C C

P QPQ
A P A P A P

r

  


      (13) 

and its smooth-pasting condition expressed as: 

 1 2 1

1 21 2 22 1 31C C C

PQ
A P A P A P

    


     (14) 

both hold when evaluated at HP P . This reveals that: 
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P P r P r

P Q r r r rP Q P Q
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P r P P r

  

  

   

     

   

     

    
      

  

     
      

  

  (15) 

 

The coefficient 22CA  for the option to switch from Regime II to I, which depends on only LP  and not on 

HP , increases in size with LP . This switch option becomes more valuable to the firm as the floor level 

increases. Similarly, the coefficient 21CA  for the option to switch from Regime II to III, which depends on 

only HP  and not on LP , decreases in magnitude with HP . This switch option becomes less valuable to 

the government as the ceiling level increases. The coefficients 11CA  and 32CA  for the switch option from 

Regime I to II and from Regime III to II, respectively, depend on both LP  and HP . 

Figure 8 
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a)

 

Figure 8 illustrates that with a floor of 4 and ceiling of 10, and the other parameter values, the option 

coefficients AC21 and AC22 are -1.8520 and 112.2797 (15), so the VC equals 138.4 (10) when PL<P<PH, less 

than the VC PV of 150 which excludes the collar option values. 
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ACTIVE PPP WITH COLLAR OPTION
INPUT EQ

P 6.00

K 100.00

 0.25

r 0.04

 0.04

PL 4

PH 10

OUTPUT

ROV CALL 61.8978 IF(B3<B13,((B4/(B14-1))*(B3/B13)^B14),B12) 7

P/-K 50.0000 MAX(B3/B7-B4,0) 5

P^ 9.4279 (B14/(B14-1))*B4*B7 6

1 1.7369 0.5-(B6-B7)/(B5^2)+SQRT(((B6-B7)/(B5^2)-0.5)^2 + 2*B6/(B5^2)) 4

A0 2.7547 (B4*(B13^-B14))/(B14-1) 8

VC 138.3688 10

VC PV 150.0000 IF(B3<$B$8,$B$8/B6,IF(B3>$B$9,$B$9/B6,B3/B7))  

2 -0.7369 0.5-(B6-B7)/(B5^2)-SQRT(((B6-B7)/(B5^2)-0.5)^2 + 2*B6/(B5^2)) 4

    

   

    

AC11 1.7862 ($B$9/($B$9^B14)-$B$8/($B$8^B14))*(B26/B28) 15

AC21 -1.8520 ($B$9/($B$9^B14))*(B26/B28) 15

AC22 112.2797 (-$B$8/($B$8^B18))*(B27/B28) 15

AC32 -439.16 ($B$9/($B$9^B18)-$B$8/($B$8^B18))*(B27/B28) 15

[      ] -0.0400 (B6*B18-B6-B7*B18) 15

(     ) -0.0400 (B6*B14-B6-B7*B14) 15

{      } 0.0040 (B14-B18)*B6*B7 15

VC IF(B3<$B$8,$B$8/B6+B22*(B3^B14),IF(B3>$B$9,$B$9/B6+B25*(B3^B18),B3/B7+B23*(B3^B14)+B24*(B3^B18)))
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In Figure 9, past the floor price of 4=PL, the difference between the VC PV and the VC consists of a long 

position in a put option (should P go below 4) and a short position in a call option (should P rise above 

10=PH).  If P=6, the net value of the put and call is negative, so the VC PV exceeds the VC.  The (VC PV – 

VC) spread increases as P increases up to 10, the ceiling price.  

14.3.3  Investment Option 

The optimal price threshold ˆ
CP  triggering an investment (with a collar) lies between the floor and 

ceiling limits, ˆ
L C HP P P  .  ˆ

CP  attains a minimum of /LP rK Q  and a maximum of 0P̂  for 0LP  , 

so the introduction of a price floor always produces at least an hastening of the investment exercise and 

never its postponement. The ceiling limit holds because of the absence of any effective economic 

benefit from exercising at a price exceeding the ceiling. The following analysis treats the threshold  ˆ
CP  

as lying between the lower and upper limits. When ˆ
L C HP P P  , the optimal solution is obtained from 

equating the investment option value with the active project net value at the threshold ˆ
CP P .  The 

optimal solution is determined from both the value-matching relationship:  

P 0 1 2 3 4 5 6 7 8 9 10 11 12

VC PV 100.0000 100.0000 100.0000 100.0000 100.0000 125.0000 150.0000 175.0000 200.0000 225.0000 250.0000 250.0000 250.0000

VC 100.0000 101.7862 105.9540 112.0411 119.8462 128.9756 138.3688 147.3733 155.6677 163.0814 169.5199 174.9786 179.6381

FC 0.0000 1.7862 5.9540 12.0411 19.8462 3.9756 -11.6312 -27.6267 -44.3323 -61.9186 -80.4801 -75.0214 -70.3619
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 1 1 2

0 21 22C C C

PQ
A P A P A P K

  


      (16) 

and its smooth-pasting condition expressed as: 

 1 1 2

1 0 1 21 2 22  C C C

PQ
A P A P A P

    


     (17) 

when evaluated for ˆ
CP P . This reveals that: 

 21 1 2
22

1 1

ˆ
ˆ

1 1

C
C C

P Q
K A P

  

  


 

 
, (18) 
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 

 
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



 
   

  

 
    

  

 (19) 

Since a closed form solution for ˆ
CP  does not exist, equation (18) is solved numerically for ˆ

CP  and then 

equation (19) for 0CA . The investment value for the project is: 

  

1

1 2

0

0

21 22

ˆ                  for 

ˆ   for ,

C C

C

C C C H

A P P P

F P PQ
K A P A P P P P



 



 


 
    



  (20) 

where ˆ
L C HP P P  . 

From (18), the threshold ˆ
CP  depends only on the floor LP   through 22CA , but not on the ceiling HP . 

Adjusting the ceiling of the collar has no material impact on the threshold, so the timing decision is 

affected by the losses foregone by having a floor but not by the gains sacrificed by having a ceiling. Since 

22CA  is non-negative, the with-collar threshold ˆ
CP  is always no greater than the without-collar 

threshold 0P̂  (6), and an increase in the floor produces an earlier exercise due to the reduced threshold 

level.  

Figure 10 shows that with a floor of 4 and ceiling of 10, and the other parameter values, the option 

coefficients AC21 and AC22 are -1.8520 and 112.2797 (15), so the FC is 38.4 (20) when PL<P<PH, less than 

the ROV without collar 61.9 (7). 
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Figure 10 

 

Figure 11 
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A B C D

INVESTMENT OPPORTUNITY FOR A PPP WITH A COLLAR OPTION
INPUT EQ

P 6.00

K 100.00

 0.25

r 0.04

 0.04

PL 4

PH 10

OUTPUT

ROV CALL 61.8978 IF(B3<B13,((B4/(B14-1))*(B3/B13)^B14),B12) 7

P/-K 50.0000 MAX(B3/B7-B4,0) 5

P^ 9.4279 (B14/(B14-1))*B4*B7 6

1 1.7369 0.5-(B6-B7)/(B5^2)+SQRT(((B6-B7)/(B5^2)-0.5)^2 + 2*B6/(B5^2)) 4

A0 2.7547 (B4*(B13^-B14))/(B14-1) 8

  10

ROV COLLAR 38.3688 IF(B3<B20,B21*(B3^B14),B3/B7-B4+B23*(B3^B14)+B24*(B3^B18)) 20

2 -0.7369 0.5-(B6-B7)/(B5^2)-SQRT(((B6-B7)/(B5^2)-0.5)^2 + 2*B6/(B5^2)) 4

FIND P^ 0.0000 B20/B7-(B14/(B14-1))*B4+((B14-B18)/(B14-1))*B24*(B20^B18) 18

P^ 4.0000  

AC0 1.7862 (1/(B14-B18))*((1-B18)*(B20/B7)+B18*B4)*(B20^-B14)+B23 19

AC11  ($B$9/($B$9^B14)-$B$8/($B$8^B14))*(B26/B28) 15

AC21 -1.8520 ($B$9/($B$9^B14))*(B26/B28) 15

AC22 112.2797 (-$B$8/($B$8^B18))*(B27/B28) 15

AC32  ($B$9/($B$9^B18)-$B$8/($B$8^B18))*(B27/B28) 15

[      ] -0.0400 (B6*B18-B6-B7*B18) 15

(     ) -0.0400 (B6*B14-B6-B7*B14) 15

{      } 0.0040 (B14-B18)*B6*B7 15

P 0 1 2 3 4 5 6 7 8 9 10 11 12

ROV CALL 0.00 2.75 9.18 18.57 30.61 45.10 61.90 80.90 102.02 125.18 150.00 175.00 200.00

ROV COLLAR 0.00 1.79 5.95 12.04 19.85 28.98 38.37 47.37 55.67 63.08 69.52 74.93 79.28

0.00
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150.00

200.00

250.00

0 1 2 3 4 5 6 7 8 9 10 11 12

P

The Effect of Price on the ROV with and without Collar
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In Figure 11, the ROV Collar (PL=4, PH=10) always has a lower value than a standard ROV without a 

collar, since there is no upper limit to the investment profit, and the investment opportunity is an 

option, not yet a commitment.  

Figure 12 

 

In Figure 12, the ROV Collar with a higher price ceiling, in this case PH=20, is more valuable than with the 

previous ceiling of PH=10, and the spread between the ROV with and without collar increases as P 

approaches PH. 

One of the most interesting aspects of comparing simple real investment options with real investment 

options with a collar is the effect of increasing P volatility on the price threshold that justifies immediate 

investment, and also on the ROV (the so-called “vega”).  Naturally the price threshold increases with the 

increased of expected price volatility shown in Figure 13, so a government seeking early investment 

might consider imposing a collar in a volatile price environment.  To the extent that this price is 

correlated with traded futures or securities, so the prospective concessionaire might seek to hedge this 

volatility, a collar seems less relevant, or in a low price volatility environment redundant (as regards the 

price threshold).  Note, this illustration assumes a very high price ceiling. The ROV without a collar 

increases almost linearly with increases in the price volatility, but the ROV with a collar has a different 

pattern as in Figure 13.  From a low volatility environment, the ROV + Collar increases, but eventually at 

high expected volatilities the vega almost becomes negative, due to the increase in the value of the 

written call option. Whether this holds if the price volatility can be hedged is an interesting question.  

P 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ROV CALL 0.00 2.75 9.18 18.57 30.61 45.10 61.90 80.90 102.02 125.18 150.00 175.00 200.00 225.00 250.00 275.00 300.00 325.00 350.00 375.00 400.00

ROV COLLAR 0.00 2.53 8.42 17.03 28.08 41.10 55.01 69.13 83.10 96.74 109.94 122.63 134.76 146.32 157.28 167.64 177.38 186.51 195.03 202.94 210.23

PL 4  PH 20
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Note, this illustration assumes a very high price ceiling; the ROV+ collar vega is different for different 

floors and ceilings.  

Figure 13 

 

 0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

ROV CALL 50.00 50.00 50.00 51.51 56.25 61.90 67.69 73.32 78.66 83.65 88.28

ROV COLLAR 50.00 50.18 52.52 56.97 62.51 67.55 70.82 72.03 71.40 69.34 66.30

P^ COLLAR 4.1439 4.7168 5.3681 6.0008 6.6458 7.3178 8.0254 8.7739 9.5670 10.4074 11.2970

P^ 4.1439 4.7724 5.6861 6.7571 8.0000 9.4279 11.0523 12.8831 14.9282 17.1945 19.6873

P 2 PL 3 PH 500

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

P Volatility

P^ Vega with & without Collar

P^ COLLAR

P^

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

P Volatility

ROV Vega with & without Collar

ROV CALL

ROV COLLAR



31 
 

EXERCISE 14.1 

Sonja believes she can build a solar plant for K=$4000 that will produce Q=10 KWh per year, that can be 

sold for P=$10 per KWh, P*Q=R.   1

1ROV B R


 , where 1 =2. For a subsidy  , the threshold R̂ that 

justifies immediate investment is: 
 

 
1

1

ˆ
1 1

Rr
R K



 


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,

11

1

1

ˆ(1 )

( )R

R
B

r



 







. If r=.07, electricity 

=.04,  a proportional subsidy  =1, should Sonja build now, or try to sell this  opportunity for  $2500? 

EXERCISE 14.2 

Carlos Azevedo owns the same type of solar plant that Sonja hopes to build, with a constant Q=1 KWh 

per year, the electricity price =€ 2, but the generous Portuguese government has guaranteed a revenue 

of € 4 per annum but required a ceiling of € 10. If r=.04, electricity  =.04, =25%, should Carlos try to 

sell this plant for €100, if AC11=1.7862 ?       1

11                   for L
C C L

P Q
V P A P P P

r


  

2

1 1
1 2 2 22 2 2

2
,

r r r 
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    
       

   
. 

EXERCISE 14.3 

Susanne Das owns the same type of solar plant that Sonja hopes to build, with a constant Q=1 KWh per 

year, the electricity price =€ 12, but a mean Spanish government requires Susanne to donate all revenue 

over € 10 per annum to the local resting home for old bulls. If r=.04, electricity  =.04, =25%, should 

Susanne try to sell this plant for  €200, if AC32=-439.16 ?   

  2

32                   for H
C C H

P Q
V P A P P P

r


   .    
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1 1
1 2 2 22 2 2
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,
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 

  

    
       

   
 

PROBLEM 14.4 

Sonja believes she can build a solar plant for K=4000 that will produce Q=10 KWh per year, that can be 

sold for P=22.25 per KWh, P*Q=R.   1

1ROV B R


 , where 1  is the solution to a simple quadratic 

equation. For a proportional subsidy  , the threshold R̂ that justifies immediate investment is:  
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If r=.08, electricity  =.04, R volatility=.2, subsidy  =.10, what R would justify immediate investment, 

and what is the value of this investment opportunity? 

PROBLEM 14.5 

Carlos Azevedo owns the same type of solar plant that Sonja hopes to build, with a constant Q=1 KWh 

per year, the electricity price =€ 4, but the generous Portuguese government has guaranteed a revenue 

of € 6 per annum but required a ceiling of € 20. If r=.04, electricity  =.04, =25%, should Carlos try to 

sell this plant for €150, if 
 
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PROBLEM 14.6 

Susanne Das owns the same type of solar plant that Sonja hopes to build, with a constant Q=1 KWh per 

year, the electricity price =€ 14, but a mean Spanish government requires Susanne to donate all revenue 

over € 12 per annum to the local resting home for old bulls in return for minimum guaranteed price of € 

4. If r=.04, electricity  =.04, =25%, should Susanne try to sell this plant for € 200, if 
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